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Abstract

This paper describes the inference-on-networks (ION) framework for forensic
interpretation of molecular typing data in cases involving allegations of infectious
microbial transmission, association of disease outbreaks with alleged sources, and
identifying familial relationships using mitochondrial or Y chromosomal DNA. The
framework is applicable to molecular typing data obtained using any technique,
including those based on electrophoretic separations. A key insight is that the
networks associated with disease transmission or DNA inheritance can be used to
define specific testable relationships and avoid the ambiguity and subjectivity
associated with the criteria used for inferring genetic relatedness now in use. We
discuss specific applications of the framework to the 2003 SARS outbreak in
Singapore and the 2001 FMDV outbreak in Great Britain.
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1. Introduction

Molecular typing data is often used as evidence in investigations of deliberate or
negligent transmission of an infectious microbe. A recent example is the 2010
cholera outbreak in Haiti, where DNA sequence data has been cited as evidence
supporting the hypothesis that United Nations troops introduced the disease [1]. In
such cases a high degree of similarity between the molecular characteristics of
microbial isolates sampled from victims and those from the putative source is
usually assumed to support the source hypothesis. Similarly, in HIV or HCV
transmission cases the degree of similarity of the sequences from victim and
(putative) source relative to a set of “background” isolates is proffered as evidence
favoring or excluding the transmission hypothesis [2,3].

However, several authors have pointed out that the interpretation of phylogenetic
findings as evidence to support a hypothesis about a disease transmission event is
subject to many caveats[4,5]. For example phylogenetic construction alone cannot
assess the probability that two isolates come from a common unidentified source of
infection, or are separated by one or more unknown intermediate infected hosts.
Obviously, if unknown or un-sampled source candidates exist, phylogenetics cannot
exclude them. In many investigations it is not possible to identify all potential
sources with certainty, or the relevant isolates and their genetic sequences may not
be available. This limitation has led to highly precautionary guidelines about the use
of microbial phylogenetic evidence in criminal prosecutions, and to restrictions on
the language of admissible testimony [6]. Thus, how to quantify and express the
degree of support that molecular comparisons provide for a source-transmission
hypothesis remains a central, yet unresolved question [7].

A closely related application of molecular typing in infectious disease epidemiology
is deciding whether an isolate can be associated with a cluster of related cases, i.e. if
an observed case of infection “belongs” to a given outbreak. Tenover introduced a
set of heuristic criteria in the context of RFLP typing, based on the number of
mutational differences among questioned and reference isolates [8]. Epi-
demiologists using other molecular typing methods typically use some variant of
these “Tenover criteria” to judge whether an infection can be assigned to an ongoing
outbreak, or is a sporadic case [9].

However, the arbitrary nature of this approach is unsatisfying: Tenover himself
recognized that the interpretation of strain typing results within this framework is a
subjective process, based on experience and intuition. In the nearly 20 years since
Tenover’s seminal paper, the technologies for typing bacteria have evolved
substantially, permitting much higher resolution, with the concomitant ability to
elucidate more detailed questions about the evolutionary relationships between
isolates in an outbreak. But progress towards acquiring a more rigorous answer to
Tenover’s question has not advanced significantly.
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In this paper we outline a framework for performing genetic inference that is based
on explicit hypothesis testing of relationships defined on networks of disease
transmission and genetic inheritance. The framework provides an analogue to a
forensic “match probability” - a quantitative probability estimate for the hypothesis
that two microbial sequences are linked by a direct disease transmission event. The
framework also addresses in a transparent way whether an isolate “belongs” to a
given outbreak, replacing arbitrary qualitative judgments with an explicit
probability expression. Such estimates can only be made if the statistical properties
of disease transmission networks are taken into account. While approximate, this
framework provides an objective way to assess the inferential power of molecular
typing results, and increases the rigor and transparency of forensic testimony
offered in either a legal or a national security forum.

2. Methods

2.1 The ION framework

The fundamental concept that underlies the inference-on-networks (ION) approach
is that genetic lineages are constrained to run along the vertices of a transmission
network, and genetic material that is the object of forensic analysis is sampled from
nodes in that network. For infectious diseases, the nodes are infected individuals
(and the genetic material is that of the infecting organism), while for mitochondrial
DNA and Y-chromosomes, the nodes are individuals (viewed as colonies of somatic
cells.) Fig. 1 shows a portion of such a transmission network.

Note that each pair of nodes in a transmission tree like Fig. 1 is connected by an M-
step transmission relationship. For example, the two nodes marked with asterisks in
Fig. 1 are separated by M = 7 steps. We do not distinguish direction of transmission
when calculating node-to-node distances. The timing of infections and other
contextual information usually indicates the direction of transmission without
ambiguity. Under these conditions the assertion that one node is the source of the
genetic material found in a second node is equivalent to asserting that the two
nodes are separated by M=1 transmission steps.

Regardless of whether we are discussing disease transmission or the inheritance of
mtDNA or Y-chromosomes, a transmission event that generates each new node in
this network represents a case where a relatively small amount of genetic material
is sampled at random from the source node, then transferred to the receiving node,
where it creates a new and larger population of sequences. For any pair of isolates
sampled from two different nodes in the network, we can define some metric 9 that
characterizes their degree of similarity. The ION method assumes that we can infer
My, the number of steps that separate these two nodes, from the observed value of &
by utilizing two empirically derived statistical distributions. The first is P(6|M), the
probability that the sequences of two isolates taken from nodes M steps apart will
differ by 6. The second is P(M), the prior probability that two nodes chosen at
random from the network will be separated by M transmission steps. Given these
distributions it is a straightforward application of Bayes’s theorem to show that:
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s my P(SIM)P(M)
m<mq P(SIMIP(M)

P(M < M|6) = [1+ . (1)

When My = 1, equation (1) provides the probability of a direct transmission
relationship as a function of the genetic distance between two isolates. Inferences
about other transmission hypotheses (for example M = Mo rather than M<My) are
easily derived as well. In section 3 we will apply equation (1) to infectious disease
outbreaks. The application of the ION framework to inferences involving mtDNA or
Y chromosomes is provided in the Supplemental File SM1. All calculations were
performed on a laptop computer using Excel.

The ION approach can be used with a variety of methods for characterizing genetic
sequences, as long as the same method is used consistently. In general, we assume
that the chosen characterization method can be used to generate phylogenetic
comparisons among isolates, and that 8 can be assigned to a pair of isolates by
summing branch lengths to their common ancestor. Less rigorous genetic distance
metrics like simple numbers of mutational differences can also be used when
appropriate. However, we assume that horizontal gene transfer has a negligible
effect on the population of genotypes over the network size (or duration of the
outbreak) of interest. Hence there are obvious limitations to the accuracy of such a
simplified approach when attempting to infer genetic relationships on very large
“historical” transmission trees.

It is not necessary to know the actual transmission tree or have an extensive set of
reference samples drawn from many nodes in the tree to apply the ION framework.
In most cases of disease transmission the actual tree that connects nodes associated
with an outbreak is not known with certainty, although portions of it may have been
inferred from epidemiological studies. In the next sections we will outline some
simple empirical methods for estimating the required distributions.

2.1 Estimating P(6[/M)

The most direct way to determine P(8|M), is by comparing the sequences of isolates
drawn from pairs of nodes whose transmission relationship is known. For
infectious disease outbreaks the selection of such a reference set requires that
transmission relationships have been determined with high confidence by
epidemiological investigation. Recently several papers have developed methods for
integrating genomic sequence data with contact tracing and timing information to
infer more accurate transmission trees than can be determined by contact tracing
alone [10,11]. Exhaustive genetic sampling of a large proportion of infected hosts in
an outbreak is generally impractical, but these papers show that a small segment of
the complete outbreak tree can be studied this way. In any case, techniques borrowed
from these somewhat complex and data-demanding tree reconstruction methods can be
used to strengthen the selection of a reference set of isolates.

Generally, we expect ION to be most accurate when the P(6|M) estimated from a
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carefully studied portion of an outbreak is used to estimate the genetic relatedness
between isolates from another, less well characterized portion of the same outbreak
where forensic questions are of interest. However, the reference set for ION does
not have to encompass an entire connected transmission tree. In fact, only a set of
M=1 related pairs is needed. This convenient simplification is implied by the
standard theories of genetic change used to construct phylogenetic relationships
[12]. If 6 is a random variable distributed as P(§|M=1) for a single transmission step,
and each transmission event represents an independent sampling of the genomic
distribution in the transmitting host, then § after M transmission steps is distributed
as the sum of M independent random variables each distributed as P(§|M=1) [13].
Distributions consistent with this constraint have a functional form such that if
P(8|M=1) = f(y), where y is proportional to the average number of mutations
observed between isolates when M = 1, then P(8|M) = f(My). Distributions for
discrete random variables such as the Poisson, Generalized Poisson, and Negative
Binomial have this property, and can be used to infer P(k|M) from P(k|M=1) when
phylogenetic branch lengths can be approximated by the observed number of
mutational changes.

While the Poisson model for P(k|M) is attractively simple, especially when there are
only a few reference pairs available, distributions with “fatter tails” might be more
accurate representations in some cases. Generally, § is a stochastic variable
governed by a probability distribution

P((SlM, tl, tz,N)

where M is the number of transmission steps separating the two nodes, the
parameters ti and t; represent the time intervals between infection of each node and
the time when isolates are obtained from each of them, typically unknown
stochastic variables in an actual outbreak. V' represents the number of generations
of replication that has taken place between infection of node 1 and the transmission
event to node 2. Clearly M and V' are roughly proportional on average, although V'
itself is a stochastic variable. The ION approach simply assumes that our inferences
can be based on empirical approximations to P(6|M) in which ty, t2, and V" have
effectively been “averaged out” as nuisance variables [14]. The effect of this
averaging is to favor overdispersed models like the Negative Binomial or
Generalized Poisson. These distributions have one more parameter than the Poisson,
and thus require larger data sets to drive down the relative uncertainty in their
parameter values. Therefore, in the face of small data sets we have adopted the
practice of using a Poisson model if this hypothesis cannot be rejected by a standard
chi-squared test.

Aless direct method of estimating P(8|M=1) is to use results from animal passage
experiments. Of course, this pre-supposes that the disease in question has a well-
understood laboratory animal model, and that the experiments replicate the
important features of the actual host-host transmission process found in nature. It
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also may be possible to use mutation rates determined by in-vitro serial transfer
experiments. This approach has been used as the basis for phylogenetic inferences
about pathogens in the past [15].

2.2 Estimating P(M)

Like the branch length metric 0, the transmission tree associated with an outbreak is
also generated by a random process. Disease transmission depends on particular
mechanisms (e.g. airborne transfer by droplets, or the oral-fecal route) that are
mediated by various kinds of social contacts and environmental factors. Each
transmission tree generated in an actual outbreak can be thought of as a random
sample from an ensemble of all possible outbreak trees that are consistent with the
underlying mechanisms of transmission for that pathogen, and the underlying
contact network for disease transmission. The probability P(M) that any two nodes
drawn randomly from the tree will be related by M steps is defined on this ensemble
of possible trees.

Imagine a set of outbreaks in which the same number of people (or animals) were
infected, but which otherwise evolved independently according to the
characteristics of the disease in question. Each outbreak would generate a different
transmission tree. An estimate for P(M) can be calculated from each tree by any
algorithm that counts the number of steps between each unique pair of nodes on a
finite network, then normalizes the resulting histogram by the total number of nodal
pairs. For example, the number of paths of length M among the set of nodes can be
determined by using a result from graph theory that relates this quantity to the
number of unit matrix elements found in successive powers of the adjacency matrix
[16]. The observed variations in P(M) from tree to tree can be considered sampling
errors about some most likely distribution that characterizes trees for outbreaks of
that particular disease and that number of nodes. Extensive computer simulations
of transmission trees have shown that the variance in P(M) become small for trees
larger than about 20 nodes, so that equation (1) is rather insensitive to the actual
tree. Moreover, for large trees equation (1) also becomes independent of the
number of nodes. Some ION problems are more conveniently solved by using an
ensemble of trees that span a given number of generations, rather than a given
number of nodes.

The shape of P(M) does depend on the transmission network connectivity. For
example, outbreaks with a large number of “superspreading” events where one
infected node generates a large number of secondary infections will differ from
those where such events are rare, and this effect can change the calculated posterior
probability P(M<Mj|d), although we have found this effect to be modest in practice.

One result of the insensitivity to actual tree size and branching is that equation (1)
will give reasonable estimates if we use P(M) distributions derived from actual
empirical transmission networks that have been deduced from epidemiological
contact tracing. We will show examples of this in section 3. It is somewhat
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remarkable that transmission networks observed in independent sections of the
same large outbreak give very similar values of P(M<Mp|3). We have also found that
similar results obtain if we use an analytical functional form for P(M) whose
parameters have been fit to data from prior outbreaks of the same disease [17].

P(M) could also be derived from simulations of outbreaks on a social contact
network that has been developed for epidemiological prediction purposes (for a
particular disease). Elaborate models for disease transmission networks have been
constructed to investigate outbreak dynamics and the effect of control measures for
both human disease transmission and zoonotics in networks of animal hosts [18,19].
Social contact networks are relatively stable but flexible descriptors of the modes
and mechanisms of disease transmission and can easily be stored as reference data.
For outbreaks involving animals this may be the only practical method of estimating
P(M).

2.3 Assigning an isolate to an outbreak

In the inference-on-networks framework, known outbreaks of infectious disease are
simply regarded as “local” portions of a larger “global” transmission tree that
includes (largely unknown) reservoirs and other outbreaks, and is extended in
geography and time. Thus, deciding if an isolate is part of a given outbreak is
equivalent to deciding if it was likely to have been sampled from a node in the local
tree. This probability is easily calculated from equation (1).

In tree-like networks there is only one path connecting any two nodes [16]. The
diameter of a transmission network is defined to be the length (in number of steps)
of the longest path found among the set of nodal pairs belonging to that network. It
is easy to see that the maximum possible length is 2G, where G is the number of
generations spanned by the tree. Thus, in the ensemble of trees defined by a certain
number of generations, P(M) = 0 for M > 2G. Note that in equation (1) we find that
P(M < 2G|k) = 1, independent of k, for this reason.

Suppose we have sampled one or more reference isolates from nodes known to be
part of a “local” outbreak tree that encompasses Gioc generations. Consider a
questioned isolate that differs by k mutations from the genetically closest reference
isolate (relative to the chosen sequencing or typing scheme.) P(M < 2Gioc|K) is the
probability that the questioned isolate was sampled from a node in the outbreak,
when we use P(M) for the larger “global” transmission network of which our “local”
outbreak was a part.

Typically we do not know the global transmission tree, so it is necessary to use
simulations or modeling to infer P(M), assuming some value Gg, for the number of
generations in the global tree. Fortunately, as long as Gglo >> Gio, the precise
number of generations used to determine P(M) is not critical. This is illustrated in
Fig. 2, which shows how P(Mxs 5|k) stabilizes after Ggio = 10. In addition, simulated
trees with a fixed number of generations provide reasonable estimates as shown in
Supplemental Fig. SF1.
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Many infectious disease transmission networks exhibit both small world behavior
and superspreader clusters [20]. In a finite-sized transmission network, increasing
the probability of finding nodes that infect large numbers of recipients reduces the
probability of observing pairs of nodes connected by a large number of steps and
shrinks the right tail of P(M). This increases the likelihood that two randomly
selected nodes are related by a smaller number of transmission steps than intuition
might suggest.

3. Results and discussion

3.1 The SARS outbreak of 2003

The SARS outbreak of 2003 can be used to illustrate the use of our framework in the
context of respiratory infection epidemiology. Several papers have discussed the
epidemiological linkage among a set of SARS patients associated with the outbreak
in Singapore [21,22,23]. Whole genome sequences of SARS coronavirus isolates
were obtained from these patients, and combinations of phylogenetic analysis and
contact tracing have been used to generate conflicting putative transmission
relationships. This provides a useful, if imperfect data set for illustrating the
methods described in section 2.

Only a few, if any, linked transmission pairs among SARS patients have been
identified with high confidence. However, we can assume a reference set based on
four direct transmission pairs identified by contact tracing [20,21]. The sequence
accession numbers, patient (isolate) identifiers, and the cited transmission partners
are provided in Supplemental Table ST1. Asindicated in section 2.2, when there are
only a few data points, we assume a Poisson distribution unless a simple chi-
squared test allows us to reject it. With only 4 reference pairs, a Poisson
distribution is assumed for P(6|M) with 6 = k, the number of substitutional
differences between sequences:

P(kIM) = L% o=y @

The average number of substitutions observed for the four reference isolate pairs
provide the estimate y = 3.0 £ 0.9.

To estimate P(M) we turn to the empirical transmission networks that several
studies have produced from epidemiological contact tracing. Four of these
networks (which are sub-networks of the global SARS transmission network) are
listed in Table 1, along with some parameters that describe them [24,25,26]. Each
tree has a different number of nodes (infected patients) and spans a different
number of generations. Besides these two characteristics, the detailed form of P(M)
for each outbreak also depends on the number of “superspreaders” (defined as
patients who infect more than 5 other patients), and the size of the superspreading
clusters.
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The calculated direct-transmission probability P(M=1|k) for the various P(M)
exemplars is shown in Fig. 3, which demonstrates an important feature of the ION
approach to microbial genetic inference that differs from phylogenetic source
inference methods. The posterior probabilty P(M=1|Kk) is the apparent empirical
probability that isolates from two nodes on the network differing by k substitutions
are separated by only one transmission step. Note that an exact match (k = 0) does
not imply with certainty that two isolates are related by direct transmission (i.e.
P(M=1|k=0) # 1 in general.) In fact, the SARS data seems to imply that there is a
reasonable chance that more than one transmission step separates two isolates
even if the sequences are identical (k=0). (However, it is not true that two isolates
separated by a single transmission step are likely to exhibit no mutational
differences: P(k=1|M=1) = 0.05) Conversely, as illustrated by the curve for y =5, if
the mutation rate is high enough a large mismatch between the two sequences (k #
0) may still imply a high probability that the isolates are related by direct
transmission.

The results in Fig. 3 also demonstrate the basic insensitivity to variation in P(M).
The curves for TSSH1, TSSH2, and Toronto closely overlap. The Beijing network,
with its larger number of superspreaders and concomitant lower ratio of
generations to nodes deviates noticeably from the others, but is not qualitatively
different. Also shown is a calculation using a theoretical P(M) distribution
(“Fronczak”, [17]) for a SARS-like transmission network with 1000 nodes,
suggesting the relative insensitivity of equation (1) to network size.

Jombart et. al. have applied a Bayesian approach to transmission network
reconstruction to the Singapore SARS data [11]. Supplemental Table ST1 lists a set
of putative transmission pairs predicted from their calculations. (It should be noted
that their calculation does not agree with contact tracing findings for one of our
reference pairs.) Using our method, the posterior support calculated for many of the
pairs is much lower than those quoted in [11], implying that for many of the pairs in
question it is much more likely than not that transmission was through at least one
intermediate person.

3.2 The UK FMDV outbreak of 2001

Networks of disease transmission often extend over large spatial regions and have
long durations. In such situations, sub-networks of infected individuals within cities,
herds, flocks, and other social groupings are sometimes considered the infected
“nodes” of a more coarsely scaled network. Each node defined this way is itself a
transmission network connecting individuals, but this intra-node structure is
ignored.

Cottam et. al. performed an analysis on data from the 2001 FMDV outbreak in Great

Britain based on such a “re-scaled” transmission network consisting of a set of 20
farms [27]. Cottam used a combination of phylogenetic and event-timing data to

10
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infer a most likely transmission network then calculated the number of variant
nucleotides between pairs of sequences representing farm-farm transmission
events based on the inferred network. Within the ION framework this is less ideal
than having transmission pairs identified by contact tracing alone because genetic
data is thus “counted twice” when we infer P(k|M). However this data set suffices to
illustrate certain points of interest.

Cottam obtained consensus viral sequences from single isolates from each farm.
Simple statistical tests indicate that the Poisson hypothesis for the number of
nucleotide differences between pairs of sequences cannot be rejected. Therefore we
assumed Eq. (2) was valid, and used Cottam’s value of y = 4.3 for the average
number of substitutions per farm-farm transfer.

Rather than use Cottam’s transmission tree as an exemplar for estimating P(M), we
generated a random set of transmission networks that had the same degree
distribution as the network inferred by Cottam. This also avoided some of the
circularity that might arise because genetic and epidemiological evidence was
already combined in constructing Cottam’s tree. Our sample trees ranged in size
from 12 to 169 nodes, representing up to 6 generations of transmission. It should be
noted that over 2000 farms were involved in the actual outbreak, but our largest
tree size was limited by the computational power of Excel running on a laptop. Each
P(M) was used to calculate a separate posterior distribution P(M=1]k), and the
results are shown in Fig. 4, along with the result when Cottam’s tree is used as an
exemplar of the outbreak. The close similarity of all of the curves shows the basic
insensitivity of the posterior distribution to the size of transmission networks when
they are generated by similar degree distributions.

Cottam assigned a probability to each putative transmission link based on data for
the onset and duration of the infection at each node. In Table 3 we compare
Cottam’s probabilities with ours. It is helpful to define the cases when both
probabilities are simultaneously greater or less than 0.5 as “agreement” and cases
where one calculation assesses the probability to be less than 0.5 while the other
assesses it to be greater as “disagreement.” Cases where there is disagreement
indicate that timing overlap between two farms appeared to limit opportunity for
transmission, but the genetic sequences are very similar.

Our results provide a high degree of support for the first four links (farms 1-5) in
Cottam’s network, which also evidently have very high support from contact tracing
[27]. However, there are a significant number of instances where Cottam assessed
the opportunity for a transmission event to be low, while P(M=1|k) supports the
hypothesis of transmission. The clearest case of discrepancy involves the direct
transmission link between nodes K and F, which receives moderate support from
our analysis while there was no temporal overlap between outbreaks at the two
farms. A possible explanation is that infection of K was caused by contaminated
fomites from farm F whose transport to K was delayed, but not stopped by isolation
measures. Because FMDV can survive in the environment for long times and remain

11
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infective, such delayed transmission is not implausible. On the other hand the fact
that there are no cases where Cottam finds the probability of transmission to be >
0.5 while we find it < 0.5 does not have an obvious explanation other than that
FMDV is so contagious that if an opportunity exists for transmission there is a very
high probability that it will be successful.

Table 3 also indicates where the calculated posterior probability was highest for M =
2 or M = 3, implying one or two intermediate nodes between those farms,
respectively. Both Cottam and a more recent analysis of the same data in [10]
concluded that unknown intermediate nodes were likely to be needed to produce a
tree consistent with the combined genetic and epidemiological findings. Both [10]
and [27] also point out that when isolates from a single animal are used, there is no
guarantee that the sequence is a valid representation of the consensus sequence for
an entire herd. Therefore, some of the “intermediate nodes” implied by larger
genetic differences might actually be artifacts caused by significant genetic drift
within a larger herd that is not taken into account.

Finally we note that both Cottam and Morelli’s analyses demonstrate that the weight
assigned to timing evidence can critically change the most likely tree inferred from
tree reconstruction methods. For example, Morelli used only part of the network
used by Cottam, which leads to a larger estimate for y. In addition, his inferred
network contains shorter chains than Cottam’s, suggesting a very different degree
distribution. This suggests caution in using such trees to generate reference data for
ION. Before tree reconstruction methods mature, selecting defensible reference sets
will necessarily remain dependent on high quality epidemiological judgments about
transmission relationships, or carefully controlled laboratory studies.

4. Concluding remarks

The ION framework allows us to formulate genetic inference problems on
transmission networks, where we can be explicit and unambiguous about the
hypotheses we are testing. Statistically minded readers will recognize that the P(M)
distribution provides the prior probabilities needed to formulate composite
hypotheses such as “not related by direct transmission” or “belongs to an outbreak.”
This formulation makes it clear that separation of two isolates by a small number of
mutations means little unless we know the average rate of change per transmission
step, and the topology of the underlying transmission network. The potential utility
of this approach for assessing the evidential weight of genetic evidence in cases like
the 2010 Haiti cholera outbreak, or in HIV or HCV transmission cases should be
clear.

Practical implementation of ION does require that accurate reference sets of
transmission-linked isolates be available, and this is primarily what limits wider
application of the framework at present. However, collecting such reference data
has close parallels to the collection of population data for mtDNA and Y-STRs, and is
simply a matter of motivation and resources. Transmission tree data is widely

12
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available from the epidemiological literature, and methods for transmission
network simulation are widely available. The relative insensitivity to the details of
empirical transmission trees suggests that trees from one part of an outbreak can be
used to infer relationships in other parts, and that simulated trees based on contact
network characteristics can be used as well.
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Table 1. Properties of some reported sub-trees of the complete SARS transmission tree.

Number of Number of Number of Largest .
Outbreak* . « " superspreadng Diameter
nodes generations superspreaders .
cluster size

TTSHI 41 4 1 22 7
(Singapore)

TTSH22 36 3 1 21 6
(Singapore)

Toronto?s 72 5 3 16 6

Beijing?6 69 3 4 33 5

*References for each outbreak tree are indicated by superscript.
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Table 2. Comparison of probabilities for FMDV farm-farm transmission linkages
from the 2001 UK outbreak. Orange indicates “agreement” while Green indicates
“disagreement”.

Pair Pcottam | P(M=1|K) Pair Pcottam | P(M=1]Kk)
1-2 0.82 0.92 K-F 0.00 0.57
2-3 0.32 0.57 L-E 0.24 0.381
3-4 0.21 0.85 F-G 0.00 0.022
4-5 0.16 0.85 G-1 0.10 0.92
3-A 0.00 0.002 I-] 0.99 0.92
A-N 0.11 0.051 M-D 0.29 0.92
4-K 0.00 0.111 0-C 0.25 0.002
K-B 0.33 0.111 0-M 0.00 0.002
K-L 0.38 0.111 O-P 0.13 0.002
K-0 0.14 0.012 - - -

'Support is highest for 1 intermediate link.
*Support is highest for 2 intermediate links.
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?.-":H 1
(] s,

Figure 1. A notional transmission tree. Each node (dot) represents an individual,
and S1 and Sz are genetic sequences obtained from isolates that come from two
nodes of interest (e.g. two infected persons), marked in blue and red, respectively.
Ho, H1, and Hj represent different hypotheses about the source of the genetic
material found in the red node. Asterisks mark two nodes separated by 7
transmission steps on this tree.

18



LLNL-JRNL-655754

1.0
0.8 -
: — G=5
-------------- G=6
064  |—G=7]
4 -
D T oo
§ s G = 10
0.4 — —G=1
-------------- G=12
0.2
0 5 10 15 20

Number of substitutions k
Figure 2. Calculations of P(M<5|k) for networks with successively larger numbers
of generations G. This shows that as long as G > 2M, the precise number of
generations used to determine P(M) is not critical.
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Figure 3. Estimated posterior probability that a pair of SARS isolates arose from direct
transmission given that their sequences differ by k substitutions. Solid lines - using the
indicated empirical or model P(M) distribution and the Poisson distribution for P(k|M)
with y = 3; Broken lines - calculated with y =1 and y = 5 respectively, with the P(M) for
outbreak TSSHI.
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P(M=1|k)

0 5 10 15 20
Number of substitutions k
Figure 4. Predicted posterior distribution P(M=1|k) based on data from reference [25].
Grey curves are based on 20 randomly generated transmission trees; Black points are

based on the tree published in reference [25].
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Supplemental Figure S1
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Figure S1. Variation in P(M<5|k) when P(M) is derived from simulated
transmission trees with 6 generations. The individual points were calculated using

the average P(M).
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Supplemental Table ST1

Table 1. Identities and sequence accession numbers for SARS isolates; The four
reference pairs are indicated by “Ref”.

Patient/isolate Accession Linked to 0=k | P(M=1]k)
number

SIN2500 AY283794 -

SIN2677 AY283795 SIN2500 2 Ref
SIN2748 AY283797 SIN2500 1 Ref
SIN2774 AY283798 SIN2500 4 Ref

Frankfurt AY291315 SIN2774 5 Ref
SIN2679 AY283796 SIN2748 3 0.252
SIN842 AY559081 SIN2679 4 0.13
SIN849 AY559086 SIN842 2 0.41
SIN847 AY559095 SIN849 6 0.03
SIN845 AY559093 SIN847 6 0.03
SIN852 AY559082 SIN845 7 0.01
SIN850 AY559096 SIN849 3 0.25
SIN846 AY559094 SIN849 5 0.06
SIN848 AY559085 SIN847 1 0.59

aAll probabilities calculated using TSSH1 as the reference network.
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Supplemental Material SM1

1. Networks of human inheritance

The set of all humans who ever existed can be looked at as two separable, but
interlocking networks, one in which all the nodes are male and the other all female.
The male network is determined by father-son lines of descent with inheritance of
the Y chromosome, while the female network is determined by mother-daughter
lines of descent with inheritance of the mitochondrial DNA (mtDNA). In the
inference-on-networks (ION) framework a person is regarded as a motile colony of
mitochondrion-containing (and for males Y chromosome-containing) somatic cells.
Each male carries a somatic population of Y chromosomes derived from a single Y
chromosome inherited from his father. Each female carries a population of mtDNA
molecules derived from a small set of mtDNA molecules inherited from her mother.
The sequences of Y and mitochondrial DNA associated with each node are typically
consensus sequences obtained from somatic cell samples.

80s and greater

__________________________________________________________________

Children

- Female descendants

- Male descendants

Figure 1. Mitochondrial DNA transmission network for five generations, with rough age
groupings. Note that males are always terminating nodes.

Figure 1 is a schematic representation of a mtDNA transmission network associated
with a set of family members spanning five generations. Hypotheses about
belonging to a family or about specific familial relatedness are easily translated into
hypotheses about network distance M, as summarized in Table 1. Thus, in principle,
inferences about familial relationships based on mtDNA or Y chromosomal
comparisons can be addressed without ambiguity within the ION framework.
(However, we will address below the limitations of current typing systems when
used in this context.)
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For each generation of father-son or mother-daughter transfer, there is a probability
that one or more changes in the consensus sequence will occur. These mutation
rates have been estimated by several authors for selected portions of mtDNA or Y
chromosomes, and provide a basis for estimating P(8|M). Many mutation rate
studies on Y chromosomes have been done using large sets of known father-son
pairs [1-6]. For mtDNA, mutation rates have been determined from isolates that
include more distant relationships in known pedigrees, in addition to mother-
daughter pairs [7]. Such studies are highly analogous to the determination of
microbial mutation rates on transmission-related isolate pairs.

Table 1. Relationships between members of the “contemporaneous family.” Shaded
rows indicate relations that extend across more than one generation of age
difference. M > 6 indicates a more extended familial connection.

M AG
Self 0 0
Parent-child 1 1
Siblings 2 0
Grandparent-grandchild 2 2
Uncle/aunt - niece/nephew 3 1
Great grandparent - Great grandchild 3 3
Cousins 4 0
Grand uncle/aunt - grand niece/nephew 4 2
Second cousins 6 0

The network structure for any particular family is often known to high precision
over many generations, and could be used to estimate P(M) much as contact tracing
networks can be used in infectious disease cases. Moreover, modeling such
networks is also possible, and has been discussed in the context of the
“mitochondrial Eve” concept [8]. For human networks, the Galton-Watson process,
which posits a probability distribution for the number of offspring of a given node, is
a simple classic model [9].

A wide variety of studies have addressed the mutation rate of a 17-locus Y-STR
system commonly used in forensic applications [1-6]. The number of mutations
observed over large sets of father-son pairs ranges from 0.03 to 0.06 mutations per
generation. We have found that the observed numbers of 0,1,2, ... mutation events
often fit well to Poisson distributions, although there is no fundamental reason to
assume that the mutational dynamics of STR loci, which depend on locus size and
local sequence context are simple Poisson processes. Similarly, mutational rates
within the mtDNA control region have been estimated to be y = 0.01 mutations per
mother-offspring transmission event [7].

These currently standardized typing systems, while very useful for other types of
inference, do not provide sufficient resolution to have utility in the ION context.
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To understand this, note that when the mutation rate y is very slow (<< 1 mutation
per node-to-node transmission), and the network is “small” in the sense that 2yG <<
1, P(M< My|k) approaches a limit that is independent of the number of observed
mutations.

P(M>M,)

P(M < Molk = 0) ~ [1+ ;=

7' =PM < My) (1)
and

_ - YM=Mg+1 MP(M) -1 _ ZZLMP(M)

POM < Myl = 1) = |1+ et 00 ] _mi e )
where Av(M) is the average of M over the path length distribution. Thus, the results
depend only on the path length distribution and are sensitive to its size and shape.
In this sense, the ION framework is only able to “resolve” familial relationships on
scales M >> 1/y. (Of course, this limitation to inferential power also holds true of
any microbial typing system if the markers change very slowly as a function of the
number of transmission steps.) In section 2, below, we will show that the
probabilistic significance of a “match” (k=0) associated with these standard mtDNA
and Y-STR typing systems is similarly very low.

Obviously, the utility of the ION framework within the realm of human DNA
forensics will be marginal unless sufficiently rapid mutational marker systems are
discovered. A recent survey of a set of 186 Y-STR loci revealed a set with an
apparent mutation rate of approximately 0.6 per generation [10]. It is of interest to
see how such a system would perform in the ION framework. We generated a set of
Galton-Watson trees [8] characteristic of male Y-chromosome inheritance and used
a Poisson model for P(k|M) with y = 0.6, and calculated P(M|k) for k=0 and k = 1.
The results are shown in Fig. 2. The error bars indicate the standard deviation from
the mean (over ten 6-generation networks with 40 + 3 nodes each.)
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Figure 2. Calculated posterior probability P(M|k) for k= 0 and 1, assuming y = 0.6
and genealogical networks of N = 40 + 3 nodes between 4 and 6 generations.

These results suggest that a combination of rapidly mutating STR markers and
whole-chromosome SNP typing (sequencing) might push the overall Y-chromosome
mutation rates into a range that would permit ION methods to be useful. It remains
to be seen if sequencing the entire mitochondrial genome will provide similar
improvements in inferential power [11].

2. Haplotype “rarity”

The network framework also allows us to quantify a “match probability” for sequences
drawn from different nodes whether we are talking about pathogen sequences from
infected hosts in an outbreak or mitochondrial DNA from a pedigree network. Consider
the case where a reference isolate has been obtained from one node in the network and its
consensus sequence is determined. How likely is it that another randomly sampled node
from the network would yield the same sequence? Simple network considerations allow
us to derive an approximate form for this probability.

Imagine a network formed by a series of transmission events that span a total of G
generations. If the average number of “offspring” a node creates in the transmission
process is < k > —1, then the number of nodes in such a network is approximately

<k>Gt1_1

N=X""1 3)

<k>-1

Assume that the reference sequence has a mutation rate y per generation, and consider an
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isolate from a node that is g transmission generations away from the reference node. The
probability that this sequence will be unchanged after g transmission steps is

P(k=0|g,G) = e V9 €))

Relative to the reference node, the fraction of nodes at generation g out of the total
number of nodes in the network is simply:

<k>9
N

P(glG) = )

Thus, the probability that a node from a network of G generations will exhibit the same
sequence as the reference node is given by:

(<k>-1){1-(<k>e V)G+1} ©6)
(<k>G+1-1)(1—- <k>e~Y)

P(k =0l6) = ¥j-oP(k = 0lg,G)P(glG) =

Equation (6) is a probabilistic measure of haplotype “rarity” on a transmission network.

It implicitly assumes that the consensus haplotype of a node becomes fixed prior to any
transmission events, and is constant for the duration. This assumption is reasonable for
human DNA, but may not be as valid for microbial infections. Note also that if the
network were that for father-to-son Y-chromosome transmission, it would include all
male relatives out to G generations, including those long deceased. Thus, this measure of
rarity is not equivalent to the standard forensic match probability, which is predicated on
collections of mtDNA and Y-STR haplotypes sampled from living persons.

This simple model illustrates certain important considerations that are often neglected in
discussions of strain rarity and genetic “matching” probability in microbial forensics [12].
Equation (6) clearly shows that an assessment of how “rare” a haplotype is depends on
the resolution of the typing system, which determines vy, and also on the connectivity of
the transmission network, as determined by <k>. These two effects are shown in Fig. 1.
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Figure 3. P(k=0|G) as a function of the number of nodes in a network.

Fig. 3 shows that for a given value of y, higher <k> increases the match probability.
This is true because when <k> is near 1, it takes many generations of host-host
transmission to create a large number of infected hosts. Thus, an arbitrary pair of
isolates is more likely to be separated by long chains of what are, in effect,
bottlenecking serial transfers. Conversely, when <k> >> 1, only a few generations of
host-host transmission are required to generate the same number of infected hosts.
Thus, pairs of isolates tend to be separated by only short serial transfer chains, and
the probability of observing two isolates with the same genotype is concomitantly
higher. One consequence of this dependence on outbreak structure is that
outbreaks in which a single infected host can cause a large number of secondary
infections (for example cholera, and other diseases transmitted by the oral-fecal
route) will tend to have smaller haplotype diversities, and the forensic significance
of a “match” between isolates is decreased.

Finally, if we use the value y = 0.06 and assume that the average number of male
children fathered by American males is roughly 0.5 (i.e. <k> = 1.5 in Eq. (6)), we find
that the match probability as a function of N is similar to the curve fory = 0.1, <k> =
2 in Fig. 3. Consistent with this result, the probability that two identical Y-STR
profiles belong to nodes separated by two generations is actually somewhat larger
than the probability they are one generation apart, simply because it is more
probable that any two nodes sampled from a typical inheritance network are two
generations distant.
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